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ABSTRACT

The first infrared heterodyne spectrometer using tuneable semiconduc-

tor (PbSe) diode lasers has been constructed and was used near 8.5 jm to

measure absorption line profiles of N20 in the laboratory and black body

emission from the Moon and from Mars. Spectral information was recorded

over a 200 MHz bandwidth using an 8-channel filter bank. The resolution

was 25 MHz (8.3x10 4cm -1) and the minimum detectable (black body) power
-16

was lxlO-16 watts for 8 minutes of integration. The results demonstrate

the usefulness of heterodyne spectroscopy for the study of remote and

local sources in the infrared.

*National Academy of Sciences/Resident Research Associate



The first successful infrared heterodyne spectrometer featuring

semi-tuneable semiconductor diode lasers was constructed and used near

8.5 Lm to make laboratory measurements of line profiles in N20 and to

detect thermal emission from Mars and from the Moon. This experiment

was conducted at the coud. focus of the 30-inch telescope at the

Goddard Optical Research Facility (Greenbelt, MD) in January and February

of 1974.

In heterodyne detection, infrared radiation (possibly from a remote)

source) is mixed with the output of an intense coherent local oscillator

and a signal is detected at the difference frequency (called the inter-

mediate frequency or IF). The spectral characteristics of the remote

source are preserved at the IF frequency, except that the frequency

scale is effectively translated by an amount equal to the local oscil-

lator frequency. Using the very best current infrared detectors and

preamplifiers, the IF bandwidth can extend from nearly D.C. to beyond 1

GHz and radio detection techniques may be used to determine the fine

structure of the spectrum of the remote source. The limiting spectral

resolution is set by the spread in the local oscillator frequency which

5 1
for semiconductor diode lasers can be less than 10 Hz. Thus, spectral

8
resolutions exceeding 1:10 are possible, far in excess of the resolutions

2
attainable with conventional infrared spectroscopic techniques. Furthermore,

the signal-to-noise ratio (S/N) of a heterodyne detection system can always

approach the limit imposed by the photon statistics of the received signal

(given sufficient local oscillator power) whereas other infrared detec-

tion techniques are limited by detector noise or background photon

noise. Thus, heterodyne spectroscopy is ideally suited for the
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identification of atomic and molecular species in remote infrared

sources and for determination of the line profiles, giving information

on the kinetic energy distributions, turbulence conditions, and doppler

velocities of the sources. The extremely high spectral and spatial

resolutions enable the study of low density, low kinetic temperature

astronomical sources such as stars, comets, interstellar clouds, and

the upper atmospheres of planets. A heterodyne system can also be

operated with lesser resolution if the electronics following the photo-

mixer integrate the intermediate frequency signal over the whole band-

width. Even in that case, however, the spectral resolution of an

instrument with a 1 GHz detector at 8.5 Am would be around 0.04 cm-.

Heterodyne radiometric methods using gas lasers as local oscillators

have recently been successfully applied to detection of broad-band

thermal radiation from astronomical sources 3 -7 and to laboratory detec-

8
tion of pollutant gases . While these results demonstrated the

feasibility of making such measurements, the real power of heterodyne

detection lies in remote spectroscopic measurements at high resolution,
9

long wavelength, and high sensitivity. Peterson et al. recently made

the first heterodyne spectroscopic measurements of C1302 absorption lines

in the Mars atmosphere near 1 llun. Their device featured a CO2 local

oscillator and so their observations were limited to the intermediate

frequency bandwidth (-1 GHz) on either side of the discrete local

oscillator frequencies. Obviously, the versatility of a heterodyne

spectrometer is limited by the frequency range over which the laser

local oscillator may be tuned and still have sufficient power and
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coherende for heterodyne operation. Continuously tuneable (over

several hundred wave numbers) lasers are not yet available in the middle

infrared, but semi-tuneable lasers have recently become available.

Cryogenically cooled semi-tuneable semiconductor diode lasers
l',1 0

have been proposed as possible local oscillators for remote heterodyne

measurements of air pollutants by Hinkley and Kelley.1 1 Diode lasers

12
emitting at nominal wavelengths from 5-34 pm can now be manufactured

13
and are commercially available . The nominal wavelength can be pre-

selected to within 5 cm-1 of the desired value by varying the chemical

composition of the ternary semiconductor compounds. These lasers

generally show multimode output, with mode separations of up to

several wave numbers. Each mode can be current tuned continuously
-1 O10

over -1 cm-1 (- 3 x 10 Hz at 8.5 pan). Thus, tuning is truly continuous

over each single mode and piece-wise continuous over the wavelength

range of multi-mode operation. The multi-mode range is 10 cm-1 if

only current tuning is used and 40 cm-1 if magnetic field tuning is

available as well.

We have built a heterodyne spectrometer using PbSe semiconductor

diode lasers as local oscillators, a HgCdTe photodiode as a photomixer, 14

and an 8-channel filter bank as a line receiver. The spectrometer was

interfaced with a computer-controlled 30-inch telescope, and a Dicke-

type chopper was used to look alternately at the astronomical source and

a precision black-body reference source (Fig. 1). An array of 4 current-

tuned diode lasers provided adequate local oscillator power for direct

-i
absorption measurements over nearly the entire 1160 to 1190 cm-1 region,
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however, the range over which the power was sufficient for heterodyne

detection was considerably smaller (-5 cm-1). The maximum total power

output from our best diode was -2 mW of which -100 MW of single mode

coherent power was actually incident on our photomixer. The mode

structure of individual lasers and the current tuning characteristics

were determined with an 0.5 m Ebert monochromator, using the photomixer

as a direct detector.

For heterodyne detection the laser and source signals were super-

imposed by the beam-splitting lens and focussed onto the photomixer

(Fig. 1). A 200 MHz band at the intermediate frequency output of the

photodiode was then fed into the 8 channel filter bank and the output

voltage from each 25MHz channel was linearly converted to a frequency

which was counted with a multichannel analyzer for the period of

integration. Data acquisition was synchronized with the chopping

frequency. The measured IF noise-equivalent-power (NEP) for our system

was 1.5xlO-1 9W/Hz at 10.6 pm and 100 p.W local oscillator power.1 5

At 8.5 pm and 100 1W the extrapolated NEP is 3.6xlo-1 9W/Hz. This is

a factor of 2 higher than the theoretical limit (hU = quantum efficiency)

and about a factor of 2 below the result derived from black body measure-

ments at 8 .~a. Neglecting optical losses and taking into account the

marginal laser power, the minimum detectable power for our system for 8

minute integration times was -lxlO-1 6 W in a 25 MHz bandwidth. The

6resolving power of our heterodyne spectrometer was 1.4xl0 . A comparison

of the resolution of our heterodyne spectrometer with other high.resolu-

tion spectroscopic techniques used to measure remote sources near 10 p.m

is given in Figure 2. A portion of the N2 0 spectrum near 8 .4 p.m is shown
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along with the resolving bandwidth of the Michelson, tilting filter and

heterodyne techniques. It is seen that only the heterodyne technique

is capable of line profile measurements of the given 10 To= N20 lines.

The filter bank together with the tunability of our lasers enabled

us to measure spectral line profiles in the heterodyne mode by position-

ing our local oscillator within 200 MHz of the line center.

Line profiles in the L band (100-000) of N20 were measured directly

and in the heterodyne mode. A cell filled with N2 0 at 10 Torr pressure

was placed in position 1 and the absorption line positions and profiles

were determined by direct detection of tuned laser line absorption (Fig. 1).

The cell was then placed in position 2 and the lines were heterodyne

detected in absorption against a 13000K black body continuum (the optical

path to the telescope was blocked). The line was then moved through our

filter bank by slightly tuning our local oscillator between measurements.

The results of these measurements are shown in Figure 3. The broken line

is the absorption line profile measured in the direct detection mode and

the histogram corresponds to the line profile measured in the heterodyne

mode in the 8 channel filter bank. The pressure broadened absorption

linewidth was about 170 MHz. For comparison purposes, both lines were

normalized to the same amplitude and the direct detected line was drawn

at the predicted line center (PLC) position in the filter bank. The

noise is greater in the heterodyne line profile because the power in a

25 MHz heterodyne channel corresponds to -10-1 3 W, whereas the direct

measurements correspond to -10 -4 W of laser power at 8.5 pm. Good

agreement is seen between the line shapes measured in the direct and
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heterodyne modes and between the predicted and observed positions of

the line center in the heterodyne mode (Figure 3). It is believed that

this is the first time that a molecular absorption line profile has been

measured using both active and passive measurement techniques.

The heterodyne system was next applied to astronomical observations

and was used successfully to spectroscopically measure thermal radiation

from Mars and from the Moon. We were unable to detect Jupiter, Venus,

and Comet Kohoutek (1973f) in the heterodyne mode. Failure to observe

Jupiter and Venus can be accounted for by their lower temperatures

(1250 K and 2150 K respectivelyl6 ,1 7) and by their low positions in the

sky during the observing runs. Both planets were always near the horizon

where atmospheric absorption and air turbulence were extremely high.

These factors would significantly decrease our signal-to-noise ratios.

Comet Kohoutek was too faint in the visible during our period of

observations for us to be able to align its image in our heterodyne

system with sufficient accuracy.

The black body continuum near 8.5 gm from the Moon and from Mars

gave heterodyne signal-to-noise ratios of 3 to 8. The variations were

caused by daily changes in the local oscillator power and changing

atmospheric conditions. Representative results are shown in Figure 4.

The signal in each channel is represented by a bar whose height is pro-

portional to the net flux received from the source. The huge signal

in the last channel of the lunar data was probably a system noise pulse

and was disregarded in determining the signal-to-noise ratio. The

theoretical system signal-to-noise ratio for a black-body source is

given by6,
18
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S/N =af(B)

(ehV/kTl)

where B is the IF bandwidth, T the integration time and a the trans-

mission of the atmosphere and optics. 7eff is the effective quantum

efficiency of our photodiode and is equal to the true quantum efficiency

degraded by a factor stemming from the lack of sufficient local osci-

llator power to reach the shot-noise limit. The true quantum efficiency

of our photodiode at 8.5 Pun was about 13%. )eff was estimated to lie

between 2 and 6.5% depending on laser operation.

Theoretical signal to noise ratios (i.e. with a = 1 in eq. 1) based

on local lunar temperature at the region of observations, known elec-

tronic parameters, and the appropriate qeff were from 5 to 10 times

greater than the experimentally obtained values, implying a = 0.1 --> 0.2.

System optical transmission at 8.5 Pm was measured to be about 0.2 and

atmospheric transmissionl7 at 500 zenith angle for this area

can be as high as 80o; thus, the resulting a of 0.16 is consistent with

the range of values obtained by comparing the experimental and theoretical

S/N ratios discussed above.

The observed S/N ratios for Mars are more compatible with a tempera-

ture of 3000K than the expected -250°K.9, 1 7 The effective quantum

efficiency changed between the measurements of Moon and Mars due to

greater laser output during the Mars run. The quantitative results

are of only limited accuracy because of the frequent variation in laser

power, poor telescope pointing stability, changes in zenith angle between

runs, and daily changes in atmospheric conditions. Accurate monitoring
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of all these parameters was not feasible at the time of the experiments.

The astronomical results obtained using diode lasers were compared

with similar measurements made using a CO2 laser. No attempt was made

to optimize the system for 10.6 ,jm. The higher laser power enabled us

to achieve neff = 20% at 10.6 ia. Signal-to-noise ratios for T = 4

minutes were from 1.5 to 9 depending on conditions. We found atmos-

pheric transmission to be 0.24 for the Moon data and 0.47 for the Mars

run using same day measurements on both sources, their expected tempera-

tures, and estimated optical losses in our system. The factor ,of two

is well within experimental uncertainty considering that the zenith

angles were not identical.

Although we were able to obtain heterodyne signals- with diode lasers

as local oscillators, the measurements were far from straightforward.

The coherent output power from presently available diode lasers is

generally below that required for shot noise limited heterodyne operation.

Only one of several diodes supplied had sufficient power output. Due to

the large divergence of the laser output beam great difficulties were

encountered in the design of the optical system to collect, focus, and

match the laser output to our heterodyne field of view. The selection

of the desired laser mode using a grating monochromator introduced

intolerable losses in single-mode laser power and heterodyne measure-

ments had to be made using all modes simultaneously. Many of these

problems can be eliminated by using diode lasers of higher power

output. Some success has already been achieved in this endeavor

(e.g. Reference 19). The diode laser output was sensitive to nearly
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all environmental effects, e.g. room temperature variations, mechanical

and acoustic vibrations, liquid helium level, and heat sinking parameters

of the helium dewar. Note, that the resolution of our instrument of 25

MHz corresponds at 8.5 p~m to about 0.6 parts per million in relative

wavelength. Environmental effects can easily cause physical changes

of that order in diode dimensions, index of refraction, focussing optics,

etc. Meaningful measurements could only be made when all the parameters

remained stable during the period of data acquisition. Needless to say,

conditions sometimes changed between measurements making accurate com-

parisons between runs difficult.

These results demonstrate the capability of our electronic and

optical system and that heterodyning can be achieved using semiconductor

diode laser local oscillators. We have shown the feasibility of spec-

troscopic observations of laboratory and astronomical sources with such

an infrared heterodyne spectrometer. With proper design and improved

diode lasers future devices should approach quantum noise limited

operation.
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FIGURE CAPTIONS

Figure 1. 8.5 pm Spectrometer Optical System.

Figure 2. Comparison of Spectral Resolution of the Heterodyne with

Other High Resolution Techniques Near 8.5 pm.

Figure 3. Heterodyne Detection of N20 Absorption Line.

Figure 4. Heterodyne Signals at 8.5 p~m from the Moon and Mars.
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